Characterization and effects of the replicated flowering time gene FLC in Brassica rapa.

نویسندگان

  • M Eric Schranz
  • Pablo Quijada
  • Si-Bum Sung
  • Lewis Lukens
  • Richard Amasino
  • Thomas C Osborn
چکیده

Functional genetic redundancy is widespread in plants and could have an important impact on phenotypic diversity if the multiple gene copies act in an additive or dosage-dependent manner. We have cloned four Brassica rapa homologs (BrFLC) of the MADS-box flowering-time regulator FLC, located at the top of chromosome 5 of Arabidopsis thaliana. Relative rate tests revealed no evidence for differential rates of evolution and the ratios of nonsynonymous-to-synonymous substitutions suggest BrFLC loci are not under strong purifying selection. BrFLC1, BrFLC2, and BrFLC3 map to genomic regions that are collinear with the top of At5, consistent with a polyploid origin. BrFLC5 maps near a junction of two collinear regions to Arabidopsis, one of which includes an FLC-like gene (AGL31). However, all BrFLC sequences are more closely related to FLC than to AGL31. BrFLC1, BrFLC2, and BrFLC5 cosegregate with flowering-time loci evaluated in populations derived by backcrossing late-flowering alleles from a biennial parent into an annual parent. Two loci segregating in a single backcross population affected flowering in a completely additive manner. Thus, replicated BrFLC genes appear to have a similar function and interact in an additive manner to modulate flowering time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa

Flowering time is an important agronomic trait, and wide variation exists among Brassica rapa. In Arabidopsis, FLOWERING LOCUS C (FLC) plays an important role in modulating flowering time and the response to vernalization. Brassica rapa contains several paralogues of FLC at syntenic regions. BrFLC2 maps under a major flowering time and vernalization response quantitative trait locus (QTL) at th...

متن کامل

A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time

FLOWERING LOCUS C (FLC), encoding a MADS-domain transcription factor in Arabidopsis, is a repressor of flowering involved in the vernalization pathway. This provides a good reference for Brassica species. Genomes of Brassica species contain several FLC homologues and several of these colocalize with flowering-time QTL. Here the analysis of sequence variation of BrFLC1 in Brassica rapa and its a...

متن کامل

The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks

The role of many genes and interactions among genes involved in flowering time have been studied extensively in Arabidopsis, and the purpose of this study was to investigate how effectively results obtained with the model species Arabidopsis can be applied to the Brassicacea with often larger and more complex genomes. Brassica rapa represents a very close relative, with its triplicated genome, ...

متن کامل

Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa

Understanding the genetic basis of natural phenotypic variation is of great importance, particularly since selection can act on this variation to cause evolution. We examined expression and allelic variation in candidate flowering time loci in Brassica rapa plants derived from a natural population and showing a broad range in the timing of first flowering. The loci of interest were orthologs of...

متن کامل

Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach.

The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 162 3  شماره 

صفحات  -

تاریخ انتشار 2002